Crystal Structure of $\mathbf{3 B i}_{2} \mathrm{O}_{3}: \mathbf{5 B}_{2} \mathrm{O}_{3}$ - A New Type of Polyborate Anion $\left(\mathrm{B}_{5} \mathrm{O}_{11}\right)^{7-}$

A. VEGAS, F. H. CANO,* and S. GARCÍA-BLANCO
Instituto de Química-Física "Rocasolano", C.S.I.C. Serrano 119, Madrid-6, Spain

Received May 27, 1975; in revised form September 30, 1975

Abstract

Single crystals of $3 \mathrm{Bi}_{2} \mathrm{O}_{3}: 5 \mathrm{~B}_{2} \mathrm{O}_{3}$ have been obtained from the melt and subsequent devitrification of the glassy compound, at $450^{\circ} \mathrm{C}$ during 90 hr . The compound is orthorhombic, space group Pnma with two formula units in the cell. The lattice parameters are $a=6.532 \AA, b=7.733 \AA$, $c=18.566 \AA$. The structure was solved from a complete set of three-dimensional Mo K_{x} diffractometer data, the final R being 0.097 .

The structure is made up of Bi^{3+} cations and O^{2-} and $\left(\mathrm{B}_{5} \mathrm{O}_{11}\right)^{7-}$ anions. The pentaborate anion is formed by two BO_{4} tetrahedra and three BO_{3} triangles, sharing edges and corners. An oxygen that is not bonded to any boron is in the center of a three-bismuth triangle. Two independent bismuth atoms are present in the structure. $\mathrm{Bi}(1)$ has six first-neighbor oxygens with an average $\mathrm{Bi}-\mathrm{O}$ distance of $2.44 \AA$ and $\mathrm{Bi}(2)$ has either six or seven oxygens in the first coordination sphere with an average $\mathrm{Bi}-\mathrm{O}$ distance of 2.43 or $2.80 \AA$, respectively.

Introduction

As part of a program aimed at the understanding of the structural principles of anhydrous borates we have undertaken the determination of the crystal structure of $3 \mathrm{Bi}_{2} \mathrm{O}_{3}: 5 \mathrm{~B}_{2} \mathrm{O}_{3}$. The only structural information about this compound, from ir spectroscopy ($/$) "implies" the existence of both BO_{4} tetrahedra and BO_{3} triangle as components of the crystal. Thus, the crystal structure determination should be the best way to corroborate the published information and to obtain more structural knowledge about this compound.

Experimental

Single crystals of $3 \mathrm{Bi}_{2} \mathrm{O}_{3}: 5 \mathrm{~B}_{2} \mathrm{O}_{3}$ were grown from the melt of a mixture of $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$ (3:5 ratio) and subsequent devitrification of the glassy compound at $450^{\circ} \mathrm{C}$ during 90 hr . The compound was identified by ir spectroscopy (1) and X-ray powder diffraction tech-

[^0]niques (2). The few crystals found were identified as $3 \mathrm{Bi}_{2} \mathrm{O}_{3}: 5 \mathrm{~B}_{2} \mathrm{O}_{3}$ after indexing the powder pattern with the cell parameters obtained from oscillation and Weissenberg photographs, which show an orthorhombic symmetry. The final cell parameters were obtained by least-squares refinement of the 20 values measured with a powder diffractometer using silicon as internal standard. The indexed powder pattern is collected in 「able 1 .

A prismatic crystal of dimensions $0.05 \times$ $0.08 \times 0.09 \mathrm{~mm}$ was used to measure all reflections included within a sphere in the reciprocal space having $0 \leqslant 30^{\circ}$. The intensities were measured in the $\omega / 2 \theta$ scan mode on a Philips 1100 four-circle diffractometer using Mo K_{α} radiation monochromated by graphite ($\lambda=0.7107 \AA$). The intensities were corrected by Lorentz and polarization factors. Absorption corrections were considered irrelevant for the purpose of this study, despite the high value for the linear absorption coefficient ($\mu=561.4 \mathrm{~cm}^{-1}$). Crystal data are given in Table II.

TABLE 1
Indexed Powder Pattern: $3 \mathrm{Bi}_{2} \mathrm{O}_{3}: 5 \mathrm{~B}_{2} \mathrm{O}_{3}\left(\mathrm{Cu} K_{\text {z }}\right.$ Radiation)

d observed (\AA)	d calculated (\AA)	hkl	$I / I_{0}(\%)^{a}$
7.1322	7.1388	011	15
6.1592	6.1622	101	35
5.3434	5.3424	102	5
4.6393	4.6416	004	19
4.4905	4.4927	103	4
3.8867	3.8847	113	4
3.5701	3.5694	022	9
3.3987	3.3987	114	21
3.2678	3.2663	200	70
3.2283	3.2282	105	100
3.0935	3.0944	006	16
2.9707	2.9709	024	21
2.9299	2.9307	123	12
2.8892	2.8886	203	6
2.6726	2.6712	204	23
2.6314	2.6298	116	10
2.5081	2.5089	017	5
2.4780	2.4781	125	10
2.4584	2.4575	107	6
2.4138	2.4160	026	27
2.3805	2.3796	033	2
2.3204	2.3208	008	10
2.2464	2.2464	206	6
2.1982	2.1978	224	11
2.1629	2.1627	301	6
2.1198	2.1200	302	6
2.0745	2.0741	127	10
2.0451	2.0445	312	7
1.9901	1.9899	028	14
1.9901	1.9897	217	14
1.9681	1.9672	109	17
1.9426	1.9424	226	23
1.8776	1.8784	305	23
1.8560	1.8566	0010	10
1.8134	1.8140	323	6

${ }^{a}$ The intensities were measured on powder diffractometer data.

Structure Determination and Refinement

The structure was solved by three-dimen sional Patterson and Fourier synthesis using the mean values for the 887 independent reflections; 151 of them were considered as unobserved after the selection criterion: $I_{\text {meas }} \geqslant 3 \sigma(I)$.

TABLE II
Crystal Data

Formula	$3\left(\mathrm{Bi}_{2} \mathrm{O}_{3}\right): 5\left(\mathrm{~B}_{2} \mathrm{O}_{3}\right)$
Crystal dimensions	$0.05 \times 0.08 \times 0.09 \mathrm{~mm}$
Space group	Orthorhombic: Pnma
Cell constants	$a=6.532(1) \AA$
	$b=7.733(1) \AA$
	$c=18.566(2) \AA$
Density	$D_{\text {obs }}=6.38, D_{x}=6.20 \mathrm{~g} \mathrm{~cm}^{-3}$
Molecules per cell	2
Linear absorption	$561.4 \mathrm{~cm}^{-1}$
\quad coefficient	

From the interpretation of the Patterson map, the heavy atoms were located in two different sites, four Bi atoms occupy the $4 c$ position ($x, \frac{1}{4}, z$) on the mirror plane, while eight Bi atoms are situated in general positions.

The Bi coordinates were refined by using the full-matrix least-squares method, the light atoms being easily recognized in a ΔF synthesis based on the phases given by the heavy atoms.
There are nine independent oxygens and four independent borons. Six oxygens and three borons occupy the $4 c$ sites while one boron and three oxygens are situated in general positions.

The structure was refined by using the fullmatrix least-squares method and unit weight for every reflection.

Atomic scattering factors for neutral atoms (3) were used. Anomalous dispersion coefficients for Bi atoms were also used (4).
Due to the extremely high absorption, individual isotropic thermal motion was assumed. After four refinement cycles, the isotropic thermal parameter of $\mathrm{O}(1), \mathrm{O}(5)$, $O(6), B(2)$, and $B(3)$ did not stay positive definite. So, the values $U=607 \times 10^{-5}(\AA)$ and $U=578.10^{-5}(\AA)$ were assumed for these oxygen and boron atoms, respectively, and left invariant during three further refinement cycles, yielding a final R value of $0.097 .{ }^{1}$ The values for these isotropic temperature factors (Table III) were assumed only for structure factor calculation, but they do not represent

[^1]TABLE III
Final Positional and Thermal Parameters $3 \mathrm{Bi}_{2} \mathrm{O}_{3}: 5 \mathrm{~B}_{2} \mathrm{O}_{3}$

	x / a	y / b	c / z	$U \times 10^{5}(\AA)$
	--	--	.	-
Bi(1)	0.4594(4)	1/4	-0.1866(1)	607(69)
$\mathrm{Bi}(2)$	$-0.0147(3)$	0.5171(2)	$0.0957(1)$	702 (58)
$\mathrm{O}(1)$	$0.358(7)$	1/4	$0.083(2)$	607(69)
$\mathrm{O}(2)$	$0.483(10)$	$1 / 4$	-0.043(3)	2684(1457)
O(5)	$0.159(7)$	1/4	-0.144(2)	607(69)
$\mathrm{O}(6)$	$0.725(7)$	1/4	$0.051(2)$	607(69)
O(7)	$0.811(7)$	$1 / 4$	-0.075(2)	178(990)
$\mathrm{O}(8)$	$0.615(8)$	1/4	0.269(3)	1316(1222)
$\mathrm{O}(3)$	$0.177(5)$	$0.407(5)$	-0.003(2)	995(756)
$\mathrm{O}(4)$	0.591 (6)	$0.414(5)$	$0.155(2)$	1750(868)
$\mathrm{O}(9)$	$0.651(5)$	$0.552(4)$	$0.265(2)$	24(656)
$\mathrm{B}(1)$	$0.545(12)$	1/4	$0.107(4)$	658(1614)
$\mathrm{B}(2)$	$0.294(11)$	1/4	$0.011(3)$	578(1143)
B(3)	$0.667(11)$	1/4	-0.024 (4)	578(1143)
B(4)	$0.619(8)$	$0.401(7)$	$0.229(3)$	$578(1143)$

a thermal model for the structure, which had to be selected after absorption correction. But this is not the aim of this study.

The final positional and thermal parameters are listed in Table III.

Description and Discussion of the Structure

The structure consists of Bi^{3+} cations and discrete $\mathrm{B}_{5} \mathrm{O}_{11}^{7-}$ anions. The remaining positive charge is compensated by one O^{2-} anion, O (5), not bonded to any boron, and situated in the center of a bismuth triangle, as shown in Fig. 1, which represents a projection of the structure along the crystallographic a-axis.

The $\mathrm{B}_{5} \mathrm{O}_{11}^{7-}$ polyanions are situated in the mirror planes at $\frac{1}{4}$ and $\frac{3}{4}$ of b (Fig. 1).

Figure 2 shows a view of this polyborate anion in which both BO_{4} tetrahedra and BO_{3}
triangles are present as predicted by ir spectroscopy (1). In this figure, oxygens and borons are labeled in accordance with Table IV.

This atomic arrangement has been found in other borates, e.g., sodium diborate (6) and potasium pentaborate (7), although in these compounds the terminal oxygens of the $\mathrm{B}_{5} \mathrm{O}_{11}^{7-}$ unit (Fig. 2) are shared with polyborate units to form a three-dimensional network.

The calculated values for the interatomic distances and angles are not very accurate because of the absorption and because of the existence of the very heavy atoms of bismuth. Only the mean values are in accord with those expected for both the BO_{4} tetrahedron and BO_{3} triangle. Thus, the reported values for sodium diborate (6) or potasium pentaborate (7) could be applied to the $\mathrm{B}_{5} \mathrm{O}_{11}^{7-}$ unit, even

Fig. 1. $3 \mathrm{Bi}_{2} \mathrm{O}_{3}: 5 \mathrm{~B}_{2} \mathrm{O}_{3}$. Projection of the structure along (100).

FIG. 2. Conformation of $\left(\mathrm{B}_{5} \mathrm{O}_{11}\right)^{7-}$ anion.
taking into account the possible distortions caused by the sharing of the terminal oxygens.

In Table IVa all the bismuth-neighbor distances less than $3.5 \AA$ are summarized. $\mathrm{Bi}(1)$ has six nearest oxygens at distances from 2.12 to $2.68 \AA$ and another four in the range 3.09 to $3.41 \AA$. $\operatorname{Bi}(2)$ has seven nearest oxygens at distances between 2.11 and $2.91 \AA$ and
another two at 3.20 and $3.36 \AA$, giving rise to a total number of nine oxygens around the $\operatorname{Bi}(2)$ atom. This distinction between two ranges of distances has been pointed out for several bismuth compounds by Abrahams, Jamieson, and Bernstein (8).

The average bismuth-oxygen distances for the first-nearest-neighbor are $2.44 \AA$ for $\mathrm{Bi}(1)$-oxygen and $2.50 \AA$ for $\mathrm{Bi}(2)$-oxygen. In this last case, the average distance becomes $2.43 \AA$ if $\mathrm{O}(4)_{\mathrm{xvii}}$ is considered as a secondnearest neighbor.

The compound could be formulated either as $\mathrm{Bi}_{3} \mathrm{O}\left(\mathrm{B}_{5} \mathrm{O}_{11}\right)$ or as $\left(\mathrm{Bi}_{3} \mathrm{O}\right)\left(\mathrm{B}_{5} \mathrm{O}_{11}\right)$. In the first case, the existence of Bi^{3+} cations and O^{2-} and $\left(\mathrm{B}_{5} \mathrm{O}_{11}\right)^{7-}$ anions must be assumed. Such a structural formula was given to zinc metaborate (9) $\mathrm{Zn}_{4} \mathrm{O}\left(\mathrm{B}_{6} \mathrm{O}_{12}\right)$ and bismuth orthoborate (5) $\mathrm{Bi}_{4} \mathrm{O}_{3}\left(\mathrm{BO}_{3}\right)_{2}$, in which the existence of oxygen not bonded to any boron has been proven. Contrarily, the $\left(\mathrm{Bi}_{3} \mathrm{O}\right)$

TABLE IVa
$3 \mathrm{Bi}_{2} \mathrm{O}_{3}: 5 \mathrm{~B}_{2} \mathrm{O}_{3}$ Interatomic Distances

$\mathrm{Bi}(1)-\mathrm{O}(5)$	2.12(5) \AA	$\mathrm{Bi}(2)-\mathrm{O}(3)_{\mathrm{iii}}$	2.11 (4) \AA
$\mathrm{O}(9)_{\mathrm{i}}$	2.23(3)	$\mathrm{O}(5)_{\text {iii }}$	2.22 (3)
$\mathrm{O}(9)_{\mathrm{xx}}$	2.23(3)	$\mathrm{O}(7)_{i}$	2.27(3)
O(2)	2.67(6)	$\mathrm{O}(3)$	2.38 (4)
$\mathrm{O}(4) \mathrm{i}$	2.68 (4)	$\mathrm{O}(6)_{\mathrm{x}} \mathrm{i}$	2.80 (3)
$O(4)_{x x}$	2.68(4)	$\mathrm{O}(9)_{\text {xiv }}$	2.82(4)
		$\mathrm{O}(4)_{\mathrm{xvii}}$	2.91(4)
$\mathrm{B}(4){ }_{1}$	2.86(5)	$\mathrm{B}(3){ }_{\mathrm{i}}$	3.19 (6)
$\mathrm{B}(4)_{\mathrm{xx}}$	2.86 (5)	$\mathrm{O}(1)$	3.20 (3)
$\mathrm{O}(7)$	3.09(4)	$\mathrm{B}(2)_{\text {ii }}$	3.24(5)
$\mathrm{O}(9)_{\mathrm{y}}$	3.10 (3)	B (2)	3.29 (5)
$\mathrm{O}(9)_{\text {xxii }}$	3.10 (3)	$\mathrm{O}(8)_{\text {xiv }}$	3.36 (4)
$\mathrm{B}(3)$	3.31 (7)		
$\mathrm{O}(5)_{\mathrm{xiij}}$	3.41(4)		
Tetrahedron $\mathrm{B}(1) \quad$ Anion $\mathrm{B}_{5} \mathrm{O}_{11}^{7-} \quad$ Tetrahedron $\mathrm{B}(2)$			
	1.30(9) \AA	$\mathrm{B}(2)-\mathrm{O}(1)$	1.41(8) \AA
$O(6)$	1.56 (9)	$\mathrm{O}(2)$	$1.59(9)$
$\mathrm{O}(4)$	$2 \times 1.58(6)$	$\mathrm{O}(3)$	$2 \times 1.46(5)$
Mean value	1.50(8)	Mean value	$1.48(7)$
Triangle $\mathrm{B}(3)$		Triangle $\mathrm{B}(4)$	
$\mathrm{B}(3)-\mathrm{O}(2)$	1.26 (10) \AA	$\mathrm{B}(4)-\mathrm{O}(4)$	$1.40(6) \AA$
$\mathrm{O}(6)$	1.44(8)	$\mathrm{O}(8)$	1.38 (6)
O(7)	1.33 (8)	O(9)	1.36(6)
Mean value	1.34(8)	Mean value	$1.3816)$

TABLE IVb
$3 \mathrm{Bi}_{2} \mathrm{O}_{3}: 5 \mathrm{~B}_{2} \mathrm{O}_{3}$ Interatomic Angles; Anion $\mathrm{B}_{5} \mathrm{O}_{11}^{7-}$

$\left(\mathrm{B}_{5} \mathrm{O}_{11}\right)$ would imply the existence of $\left(\mathrm{Bi}_{3} \mathrm{O}\right)^{7+}$ cations and ($\left.\mathrm{B}_{5} \mathrm{O}_{11}\right)^{7^{-}}$anions.

In our case, since the $\mathrm{O}(5)$-bismuth distances do not differ from the other bismuth-oxygen bond lengths, we think that the $3 \mathrm{Bi}_{2} \mathrm{O}_{3}: 5 \mathrm{~B}_{2} \mathrm{O}_{3}$ should be formulated as $\mathrm{Bi}_{3} \mathrm{O}\left(\mathrm{B}_{5} \mathrm{O}_{11}\right)$.

References

1. C. E. Weir and R. A. Schrofder, Nat. Rur. Stand. J. Res. 68A, 465 (1964).
2. E. M. Levin and C. L. McDaniel, J. Amer. Ceram. Soc. 45, 355 (1962).
3. D. T. Cromer and J. B. Mann, "X-Ray Scattering Factors Computed from Numerical Hartree-Fock Wave Functions," Los Alamos Scientific Laboratory Report LA-3816, Los Alamos, New Mexico (1968).
4. D. T. Cromer and D. Liberman, J. Chem. Phys. 53, 1891 (1970).
5. A. Hyman and A. Perloff, Acta Crystallogr. B28, 2007 (1972).
6. J. Krogh-Moe, Acta Crystallogr. B30, 578 (1974).
7. M. Marezio, Acta Crystallogr. B25, 1787 (1969).
8. S. C. Abrahams, P. B. Jamieson, and J. L. BernSTEIN, J. Chem. Phys. 47, 4034 (1967).
9. P. Smith, S. Garcia-Blanco, and L. Rivoir, Z. Kristallogr. 119, 375 (1964).

[^0]: * To whom all correspondence should be addressed.

[^1]: ${ }^{1}$ A table containing the observed and calculated structure factors is available on request from the authors.

